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Abstract. The methods of the generating functions far invariants (covariants) of classical 
groups can be used far the solution of a numberofproblems connected with the construction 
of the bases of the wavefunctions and effective Hamiltonians. In particular, the method is 
applied to the decomposition U(6) = SU(3) x SU(2) 3 SO(3). and the fallowing generating 
functions are obtained (i) the generating function for the SU(3) basis of Bargmann- 
Moshinsky; (ii) the generating function for the number of invariants in the interacting 
vector boson model; (iii) the generating function for the claaaification of the states i n  the 
scheme SU(3)3S0(3) .  

1. Introduction 

Recently a number of models (microscopic and phenomenological) have been used 
widely for the description of the collective states of nuclei: the SU(3) model of Elliott 
(1958), the symplectic Sp(6, R )  model (Raychev 1972, Rosensteel and Rowe 1976, 
Fillipov et al 1981, Rowe 1985), the various versions of the interacting boson model 
(IBM) (e.g. see Arima and Iachello 1975, 1976, Jansen et a /  1974), the interacting vector 
boson model (IVBM) (Georgieva et a /  1982, 1983, 1985, 1986), the Bohr-Mottelson 
model (Bohr and Mottelson 1974, Faessler 1966) and so on. In all these approaches 
the following important problems arise: 

(i) The first problem is connected with the classification of the states in these 
models. In the algebraic approaches the classification problem is solved by the reduction 

G,  3 G 2 2 . .  .2 G,, (1.1) 

where G, is the group of dynamical symmetry and, as a rule, the last group in chain 
(1.1) is SO(3) (or SU(2)), whose irreducible representations (IRS) DL (or D’) determine 
the orbital (or the total) angular momentum of the nuclei L (or J ) .  The states are 
labelled by the quantum numbers of the IRS of the groups in (1.1). In the general case, 
however, chain (1.1) is not a canonical one, i.e. in  the restriction of G, to G,,, one I R  

of G,,, may appear more than once in the I R  of Gj. Thus the classification problem 
is reduced to the evaluation of the multiplicity U: in the decomposition 

where D“ and D* are the IRS of the groups Gj and G,+, in (1.1) 
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One of the most effective tools for the solution of this problem is the method of 
generating functions (GFE) or Molien functions (MFS)  (Molien 1898). By definition, 
the M F  Q A ( x )  is the GF for the multiplicity numbers v: in (1.2): 

Q , , ( x ) = I  u:x* (1.3) 
A 

i.e. the multiplicities U :  in (1.2) coincide with the coefficients in the expansion of 
Q,,(x) in series of the parameter x. 

The !P.: of !he L.ie groqs In (!.I), referred to as symmetry groups ef the mode!, 
are usually labelled by one or several integers A = ( A , ,  , A k ) .  Thus, for instance, the 
IRS of SO(3) are characterized by the angular momentum L = 0, 1, 2 , .  . . . For this 
reason these integers are chosen as exponents in (1.3) and we must consider (1.3)-as 
a shortened form of the expression 

n , x k ) =  1 u A , , . . . , A k x ? L  . . . x*,. . 
*,.-...A* 

One can also introduce two or more parametric MFS, 

( 1.4) 
A A A  

@ ( x , y ) =  1 v * x  Y 
A,* 

which give the decomposition (1.2) for all IRS D". 
The properties of GFS of the type (1.3) and (1.4) are discussed in Asherova e f  a1 

(1988), (see also Weyl 1947). Methods for the construction of such G F ~  have been 
developed by the Montreal group (Gaskell et al 1978, Coutre and Sharp 1980, Giroux 
e f  a/  1984, Gaskell and Sharp 1981, Judd e f  a1 1974) (see also Gilmore and Draayer 
1985). 

(ii) The second problem, which can be solved by means of the MFS, is that after 
their reduction in the standard form, these functions give information about the 
structure of the basic functions [A, 01, A, ae) of the I &  D" for the reduction G. 3 G,+, 
as a polynomial in some 'elementary permissible diagrams' (EPDS) (Moshinsky et a1 
1975). Here, the quantum number a = I ,  2, , v: distinguishes the different, linearly 
independent vectors, belonging to the I R ~  DA, which appear more than once in the 
decomposition (1.2) and Zt gives the row of the I R  D" of the subgroup Gj+, .  The 
complete set of these EPDS is, as a matter of fact, an integrity basis, which gives the 
structure of lA, a, A, A)-the highest weight vector according to G,,, . 

(iii) The third, very important, problem is to find the most general form of the 
Hamiltonian of the model. The Hamiltonian, irrespective of the particular type of 
interaction between the nucleons, must be represented as a function of the independent 
basic scalars of SO(3) .  We shall refer to this Hamiltonian as an effective Hamiltonian. 
In order to solve this problem one can use the properties of the MFS, namely, that a 
GF of the type 

Qo(x, A) =z v: (A)x"  (1.5) " 
gives the total number u; (A)  of invariant operators with regard to the group Gi, which 
appear in the nth symmetrized Kronecker product A'"] of the IR D" of the same group 
Gj, From the specific expression of this C.F one sac a!so es!ah!igh !he structure of the 
independent invariant operators Ik ( k =  1.2,. . . , m ) ,  where m is the dimemion of the 
integrity basis of the gi invariants (see section 2). i.e. how to construct the latter by 
means of the quantities b,, transforming according to the I R  DA of Gi. The quantities 
bAsr may he, for instance, boson creation or annihilation operators, whose quantum 
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numbers are determined by the chain G, 3 G,,,.  In other cases b,, may be the 
generators of G,, which transform according to the adjoint representation of G,. Then 
the effective Hamiltonian of the model, invariant with regards to g,, can be expressed 
as a polynomial (or series) in the basic invariant operators 

He,= 1 asL, , 5 m l p ,  ,. I > ,  ( 1.6) 

Here uy3, .I_ can be considered as phenomenological coefficients which can be deter- 
mined, for instance, by fitting experimental data. The ordering of the operators in the 
RHS of (1.6) is arbitrary but fixed. 

The considerations mentioned above show the importance of the M F ~  and their 
generalization for physical applications. These functions give information about the 
classification of the states, the structure of wavefunctions and Hamiltonians of the 
quantum system with a dynamical symmetry given by chain (1.1). For the sake of 
completeness, the definition and the general properties of the MFS will be given without 
proofs in section 2. Further, we will obtain some GFE, which are very useful for the 
construction and practical realization of IVBM. A GF for the basis of Bargmann- 
Moshinsky for the model SU(3) 3 SO(3) will be constructed in section 3. It should be 
noted that this basis is used in all calculations performed in IVBM. 

In  section 4, by means of creation and annihilation vector boson operators, we are 
going to construct a GF for the invariant operators in IVBM. 

S I .  .In/ 

2. Definition and basic properties of the Molien function 

The general theory of G F ~  can be found in Chacon et al (1976), Judd et a/  (1974), 
Gaskell et al(1978), Patera and Sharp (1974), Asherova e f  a/ (1988) and Weyl (1947). 

Let b i ,  a = 1, 2,.  . . , [ A ] ,  be a set of operators transforming according to some 
reducible or irreducible representation of the (compact) group G. Here [A]  = dim A is 
the dimension of the representation and a denotes the row of the representation. From 
b i  one can construct symmetric homogeneous polynomials of degree s, which transform 
according to the representation D[”’ of G. AS a matter of fact DcA” is the sth 
symmetrized Kronecker product of D A  or the symmetrical plethism [A]O[s]. As a rule 
D[*’ is reducible and decomposes into a direct sum of the I R S  D” of the group G, 

where n(A, A,  s) is the multiplicity of DA.  
The problem is to find all irreducible tensors, which are homogeneous polynomials 

in b i  and invariant with respect to G (G-scalars) or covariants (i.e. transform according 
to some I R  of G).  It is well known (see Asherova et a/ 1988) that in both cases there 
exists a minimum set of G-scalars (or G-covariants), in terms of which any G-scalar 
(or covariant) of an arbitrary degree in b, can be expressed in a multinomial form. 
This minimum set of operators is called an integrity basis for invariants (or covariants) 
in G. 

Proposition 1. From the operators b: one can construct a set of homogeneous poly- 
nomials I,, , . ., I,, , . . , IN+*, which are scalars with respect to G and have the 
following properties: 

(i) the first N-invariants, called basic invariants, are algebraically independent; 
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(ii) an arbitrary invariant I can he represented in the form 

I = P o + l , + , P , + .  . .+ I,+,P, (2.2) 

where { P J  are polynomials only in the basic invariants I,, . . . , I,, N =[A]. 
The invariants I,,,, . . . , I,,,, referred to as auxilliary invariants, appear in (2.2) 

at most linearly since the square of any of the auxilliary invariants can he represented 
as a polynomial in the basic invariants. The set of operators I,, . , ., I , , .  . . , I,,, is 
referred to as  an integrity basis of invariants. 

Definition 1. An arbitrary homogeneous polynomial in b:, which transforms according 
to the I R  Dh of G, is called a polynomial covariant P A .  

Proposition 2. An arbitrary covariant P A  can he represented in the form 
N .. 

P"= c VCP, (2.3) 
i=, 

where P, are polynomials in the basic invariants I,, . . . , I, and V? are auxilliary 
homogeneous polynomial covariants. The set of operators 

11, 1 2 , .  . . , IN. VI,  v 2 , .  , . > VN (2.4) 

is referred t o  as an integrity basis for covariants. 

facilitated by making use of the MFS. 

Definition 2. The M F  @(A, A, x) is a GF for the multiplicity n(A, A, s) in the decomposi- 
tion (2.1), i.e. n(A, A, s) are the coefficients in the expansion of @(A, A, x) in power 
series of the parameter x: 

@(A,A\,x)=Z:n(A,A,s)x2. (2.5) 

The explicit construction of the integrity basis for invariant covariants can be 

In other words n(A, A, s) in (2.5) give the number of the hasic covariants of the type 
A and degree s, i.e. the homogeneous polynomials in bb of degree s, which transform 
according io E" of G .  

Theorem of Molien (1989). The G F  for the number of covariants of type A and degree 
s for the finite group G is given by the expression 

where X,,(g) is the charactter of the element g in the IR D" of G; IGI =dim G is the 
number of elements of the finite group G, and D*(g)  is the matrix of the element g 
in the representation D*. 

Taking into account the properties of the characters, (2.6) can be rewritten in the 
form 

where n ,  is the number of elements in the class C, and D " ( C )  is the matrix of an 
arbitrary element g e  C. 
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Formula (2.7) can be generalized for continious groups by changing the summation 
over classes with integration and the order of the group /GI with the group volume 
VG=jdC. 

(2.8) 

Proposition 3. If the integrity basis of invariants consists of N basic and k auxillliary 
invariants of degree nj ( 1  s i s  N) and Zj (1  s j s  k) respectively, then the MF can be 
reduced to the form 

l + X ~ ~ +  ...+ xx, 
(1-x"x). .. (1-X"")  

@(A, A, x) = 

where the numbers n, and %, may appear more than once. It should be noted that the 
opposite statement is not always true. 

Ploposifion 4. If the integrity basis for covariants consists of N basic invariants and 
M auxilliary covariants of degrees n, ( 1  s i s  N )  and m, ( 1  s j s M ) ,  then the MF can 
be reduced to the form 

+ . . . + Xm, 
@(A, A, x) = 

( 1  -x" ' ) .  . . ( 1  -x"" ) '  
(2.10) 

Again, the opposite statement is not always true. 
At the end of this section we are going to give an example concerning the construc- 

tion of the MF in terms of boson creation operators b;,,, which are quadrupole tensors 
with respect to the group SO(3). Our aim is to construct the function 

@(J,  d )  = 1 v(L, n)JLd". (2.11) 
L," 

According to the generalization of the theorem of Molien, (2.11) can be expressed in 
a form analogous to (2.8), namely 

(2.12) 

Here we have replaced A by J and have omitted the parameter A = I, which has the 
value 1 = 2. In order to underline that b:, are SO(3)  quadrupole tensors instead of b:, 
we use the letter d; in this sense the factor d" in (2.11) reminds us that we consider 
a d" configuration. 

In order to obtain (2.12) in an explicit form we take into account that the class C 
of SO(3) is determined by a rotation through an angle 0(0< 0s 2n) about some axis. 
Then the character of the IR D' is given by the well-known formula 

The volume element d C  and the group volume V,  are given by 

e 
2 

V, = jo2- s i n 2 j  e dO= 1 .  d C  = sin2-d0 (2.14) 
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In the case of a rotation about the z-axis the matrix D2( C )  is diagonal and has the 
eigenvalues 

P P Raycheo ef a/  

p2 = 22 p , = z  Po= 1 p- ,  = 2-1 p-2 = z -2 

and therefore 

detlE -dD’(O)( = (1 - d)(l  -dz)(l  -dz2)(1 -dzf’)(I -dz-’). (2.15) 

The integration over 0 ( z  = e‘”) is reduced to an integration over the unit circle in the 
complex plain. By substituting (2.13)-(2.15) in (2.12) we obtain 

(2.16) zxT(z) 
(1 - d ) ( l  -dz)( l  -dz2)(l  -dz-’)(l -dz-2)’ 

Then, assuming that d < 1 one can evaluate this integral by means of residues and 
after some tedious algebra we obtain 

1 + d3J3  @(J, d )  = 
(1 - d2)(1 - d’)(l - dJ2)(1 - d2J2)’  

(2.17) 

This final expression for the MF built up  of quadrupole boson creation operators 
coincides with formula (12) of  Gaskell et at (1978). Its interpretation for particular 
cases is also well known (e.g. see Chacon et a /  1976). However, we gave this example 
in order to show that, although the determination of the GFS by evaluation of integrals 
of the type (2.12) is straightforward, the particular calculations may be very complicated. 

3. Molien function for the basis of Bargmann-Moshinsky 

The basic assumption of WBM is that the nuclear collective motions can be described 
by means of two types of vector bosons, called n- and u-bosons, whose creation 
operators b: and b: are SO(3) vectors and in addition transform according to two 
independent I R ~  (1,O) of SU(3). The corresponding annihilation operators b ,  and 6 ,  
transform according to ( 0 , l )  of SU(3). We also assume that n- and u-bosons belong 
to a ‘pseudospin’ doublet and differ in an additional quantum number Mr (projection 
of the ‘pseudospin’), which takes the value MT =$ for the n-bosons and Mr = -4 for 
the v-bosons. The corresponding ‘pseudospin’ operators are 

1 
T-, = - bib, 7- - ?  1 

T,  = - b:b2 Jz JZ u- z(bT61 -b:b2) 

and it is obvious that they define the Lie algebra of SU(2). 
The Hamiltonian and the observables of the system must be constructed in terms 

of the creation and annihilation operators of these vector bosons and the basic states 
can be chosen as polynomials in the creation operators acting on the vacuum state. 
More precisely, the collective observables of such a system can be expressed in terms 
of the bilinear products b;,,,,bTm,, b8,,,,b,,,,,, b&bJ,,,, (i, j = 1,2; m,, m, =0, *l) .  These 
operators form the Lie algebra of the symplectic group Sp(12, R), which plays the role 
of the group of dynamical symmetry of the system. The set of the operators b:m,bJm, 
defines the maximal compact subalgebra of Sp(12, R), namely U(6). 
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The Hamiltonian H of the system must be an SO(3) scalar and, if we assume that 
it conserves the number of bosons and contains only two-body interactions, it can be 
expressed in terms of the U(6) generators in the following form: 

where s( i ,  j )  and VL(i, j ,  k, I) are phenomenological constants. In this case it is obvious 
that we can restrict ourselves and consider U(6) as the dynamical group of the system. 
This group has the following - chains of subalgebras: 

(3.1) 

SO(3) 
The different chains of subalgebras in (3.1) define the special symmetry limits of the 
model. 

Hence, the problem is to find the basic SO(3) scalars, constructed from an equal 
number of creation and annihilation operators for the chains shown in (3.1). It is also 
important to build up a n  appropriate basis in which the Hamiltonian can be diagonal- 
ized. These problems can be solved by means of M F ~ .  

in  this paper we are interested in the rotationai iimit of (Xi), nameiy the chain 
U(6) 2 S U ( 3 ) 0 S U ( 2 )  >S0(3 ) .  In order to clarify the construction of the basis we 
consider a G F  of the type 

F(P, 4, a, b , O =  E y ( % , u 2 , h , ~ ,  L ) p ' V a  A P L  b 5 (3.2a) 

where v ( n , ,  n 2 ,  A,  p, L) is the number of SO(3) tensors of rank L, which can be 
constructed by n, creation operators of vector bosons of the type bTml and n2 vector 
bosons of the type bTm2, By definition these tensors have a fixed (A, p )  symmetry with 
regard to SU(3). Thus, this GF gives an answer to the question about the number of 
linearly independent states 

In,, n 2 ,  .,(A,p),b', L)-(b:)"1(bT)"210) (3.26) 

with fixed ( A , p )  and L. Since the boson operators bTm, and bzm2 ( m , ,  m2=0,*1)  
transform according to two independent I R ~  (1 ,O)  of SU(3), (3.2) gives an information 
on the following: 

(i) About the reduction of the Nth  symmetrized Kronecker product N = n , + n 2  
of the IR (1 ,0)1+(1 ,0)2  of the group SU(3) to the I R  ( A ,  p )  of the same group, 

n ~ , n A w . L  

[(l,O)1+(1,0)21["= 1 ~ ( A , P ,  N ) ( A , p )  (3.3) 
A.+ 

or, which is the same, it gives the restriction of the most symmetric I R  of the group 
SU(6) with a Young Scheme [ N I  to the 1Rs of the group SU(3), where SU(6) acts in 
the six-dimensional space of the operators bTm, and bzm2. 
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(ii) About the reduction of the I R  (A,  p )  of SU(3) to S0(3),  

(A,  IL) =E P, LIDL. (3.4) 
L 

(iii) About the explicit form of the integrity basis in terms of bTm, and b;m2, which 

In the last case the GP can be constructed by combining the CFE of the type (3.3) 

First of all it should be noted that (3.3) can be expressed by means of the direct 

determines the structure of the vectors with fixed (A,  p )  and L. 

and (3.4). 

product of the I R ~  of SU(3) ( n , , O )  and ( n 2 , 0 )  

i = o  

The latter results in the following expression: 

which, as a matter of fact, is a particular case of formula (1  1 )  of Patera and Sharp (1979). 
The GF for (3.4) is also well known (formula (19) of Gaskell e f  al (1978)): 

&(A, E, 5 )  = 1 p. L)A*B"tL 
A+.L 

= ( 1  +A&) x A'+2'B'+'" 5 '+' 
,.S. L" 

- ]+AB.$ 
- 

( 1  + A ~ ) ( I  - B ~ ) ( I  - A ~ ) ( I  - BO' (3.7) 

The resulting GF F ( p , q ,  a, b, 5 )  can be obtained by combining (3.6) and (3.7), taking 
into account the following considerations: 

(i) In the expansion of F,(p ,  q, A, E) in power series, 

Fi(Piq, A, E )  = 1 vi(ni ,  n 2 ,  A, p)P"'qn2AAB'' 
",."I.*# 

u , ( n , ,  n 2 ,  A, p )  gives the multiplicity of the I R  (A, p)  of SU(3) in the decomposition 
of the Kronecker product [ ( n , )  x (n2)]". 

(ii) In the expansion of F,(A, E, 5 )  in power series, 

A'.w',L 
F,(A, B, 5 )  = x u ~ ( A ' ,  p', L )A" 'B* 's~  

u2(A', p', L )  gives the multiplicity of the I R  D L  of SO(3) in the IR (A',  p') of SU(3). 
(iii) The multiplicity v ( n , ,  n 2 ,  A, p, L )  in (3.2) is obviously given by 

U ( ~ , , ~ ~ , A , I L , L ) = ~ ~ ( ~ ~ ~ , ~ ~ , A , ~ ) U Z ( A , L L , L )  

Now let us consider the product function 

If we take into account only terms with A = A '  and 'p  = p' we obtain 
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Further, i f &  and v'% are substituted for A and B this expansion can be represented 
in the form (3.2): 

F , ( p , q , & , ~ ) F , ( J ; ; , v ' % , 5 ) =  Z u ( n , , n , , A , p , L ) p n , q n z a  A F L  b 5 . 
n ~ . n i . * . ! ~ ' . L  

Taking into account (3.6) and (3.7) the resulting GF can be expressed in the form 

F(P,  q, a, b, 5) 
IC, "+s, T>'iY, r\* 

= P q' - ( \ i aJ  ( + O J -  
X.,I* 

(3.8) 

The condition that only terms with equal powers of the parameters A and B in F,  and 
f2 should be taken into account leads to the restrictions x + y =  r+2t,  z = s + 2 u  or 
x + y = r + Z t + l ,  r = s + 2 u + l  andafter the summationweobtain 

1 [(&)'"'(v'%)"2"5".+ (J;;)""+l(~)'+2"+1 ,+*+I 5 I .  
r ,r , t .u  

This function bas the following important properties: 
(i) It is symmetric with regard to the substitution b:++b:, i.e. p c f q  
(ii) If a =  b = l  the GF (3.2) reduces to 

= 1 c ( n , ,  n,, L)p"*q"zfL 
",."2.L 

where 

c ( n , , n 2 , L ) = I  v ( n , , n , , A , p , L )  
A.* 

is the multiplicity of L-tensors that appear in the symmetric Kronecker product 
[ I =  101= 11'" for arbitrary (A, p )  of SU(3). In this case from (3.9) one obtains 

(3.10) 

This formula coincides with formula (14) of Gaskell et a /  (1978). I t  gives the 
classification of the states (3.26) Inl, n 2 ,  7, L, M) without taking account of the SU(3) 
symmetry, that is: y includes the labels a: (A: p )  and p in (3.2b).  

(iii) If a = b =  1 and g=O the GF (3.9) reduces to the MF for SO(3) invariant 
operators, which can be constructed by means of two types of vector bosons. In this 
case (3.9) can be rewritten in the form 

which is a particular case of (3.10) and is in accordance with similar results (Gilmore 
and Draayer 1985). 

(iv) If q =0 ,  a = 1 formula (3.9) reduces to the GF for the multiplicity of SO(3) 
tensors, constructed by vector bosons of only one type, namely, the product [ I  = I][". 
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In this case (3.9) has the form 

P P Raychev ef al 

(3.12) 

which is in agreement with Asherova e f  al (1988). 
The classification of the states for n ,  + n2 = N =s 4 following from (3.9) is given in 

table 1. One can easily verify that (3.12) is also in accordance with table 1. Thus the 
GF (3.9) gives a complete classification of the states in IVBM with fixed n,, n2,  L and 
(A. P).  

It should be pointed out, however, that (3.9) is not yet the GF for the basis of 
Bargmann and Moshinsky. In their original work (Bargmann and Moshinsky 1961), 
the authors assume that b: and b: are united in an SU(2) doublet (a 'pseudospin' 
doublet) and differ in the third projection of the 'pseudospin' ~ = * f .  Further, they 
consider only vectors of the type (3.2b) with a fixed total 'pseudospin' T = A / 2  and 
maximal value of the 'pseudospin' projection 

A 
2 (3.13) M - ?  - 2 ( n ,  - n2)  = T = - .  

In this case the GF for the basis can be constructed by means of calculations analogical 
to (3.9) under the additional restriction (3.13). As a final result we obtain 

Table 1. Claasilication of the states in WBM ( N =  n,+n,=4) 

0 

1 
1 

0.2 
0.2 . 
1 
0 , 2  

1 ,3  
1,3 
I. 2 
1.3 
1.2 
I ,  3 

0 , 2 , 4  
0,2,4 
I ,  2.3 
0,2,4 
I ,  2.3 
0 , 2  
0.2.4 
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According to propositions 3 and 4 (see (2.9 and 2.10)) this GF has the following 
meaning: each term of the type pnqn'a*b'fL in the denominator of (3.14) corresponds 
to the basic covariants, i.e. SO(3) tensors of rank L, which are constructed by nl 

v-bosons and n2 v-bosons and transform according to the IR (A, p )  of SU(3). The 
same is valid for the term in the numerator, but this covariant is an auxiliary one, i.e. 
it can appear at most linearly. 

Thus the basis of Bargmann and Moshinsky (1961), 

A A 

IN = n ,  + n, ,  (A,  p) ,  T =  -, Mr = t ( n ,  - n ) --, L, M = L) 

is constructed as a stretched product of the EPDS, given in table 2 and can be represented 
in the following form: 

2 - 2  

The basic EPDS of the integrity basis q , ,  v2, A,  and A,, can appear in arbitrary degrees, 
while w appears at most linearly. The latter is due to the fact that w 2 =  v2A,-q:AI2.  
The integers a, b, c, d and p are determined by the conditions 

L = P + o + b  

N = A + 2 p  = 3 p  + a  +2b +2c+4d  

T = -  = + ( P  + a  + 2 c )  
A 
2 

i t  is obvious that 

A t p = $ + L + Z c + 2 d  

which leads to 

if A + p -  L even 
p = !  : F l i . . - r " A A  .1 n I p 

I Y Y Y  I '  

and finally for the basis of Bargmann and Moshinsky we have 

Table 2. EPDS for the construction of the basis of Bargmann-Mashinsky 

Term in (3.14) n, n2 A F L EPDr in (3.15) 

pa5 I 0 I 0 1 'I, = ( b : ) ,  
p%' 2 0 2 0 0 v 2 = ( b : ,  b:) 

p'q'bl 2 2 0 2 0 A , , = ( [ b : x  b:]' [ b : x b : ] ' )  
pi@# 2 I 1 1 1 w = [ b : x [ b : x b : ] ' ] i  

I I 0 I I A , = [ b T , x b ; ] :  
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4. Generating function for the invariant operators of IVBM 

The OF for the L-tensors, which can be constructed by the vector creation operators 
6: and b: is of the type (3.10). If p = q, (3.10) can be rewritten in the form 

P P Raychev et al 

(4.1) 

By analogy to (4.1) the OF for the L-tensors built from the annihilation operators b, 
and b, is 

(4.2) 

Our purpose is to construct a G F  for the SO(3) invariants, which can be constructed 
by b:,  b:, b,  and b, under the additional condition of conservation of the boson 
number. The latter means that only terms of zero degree in 5 and equal powers of the 
parameters p and p should be taken into account in the product F , ( ~ , f ) f , ( p , [ ~ ' ) .  
Further, the product pNpN must be substituted by s N  and as a result one obtains the 
GF 

F(s)=X v ( N ) s N  (4.3) 
N 

where v( N) is the number of invariants of the type 

( b T ) " ( b z ) b ( b i ) ' ( b d d  

with a +  b = c + d  = N. 
Taking into account (4.1) and (4.2) we start from the expression 

s(s)=(l+P25)(l+825~1) X P  P cd"-"'-" (4.4) 2u+2b+2c+d+e  -20i+2b'+2c'+d'+e' 

which splits into four terms: 
(i) The first term is of the type 

2a+ZDt2c+d+e -2n'+2b'+2ci+d'+e' d+c-d' -e '  S , = X p  P 5 
where the summation is carried out under the conditions 

a + b +  c = a'+ b'+ c' 

d + e =  d '+e '  

The result for S ,  is 

S ,  = ( I  + s ) ( ~  +4s2+s4)[(1 - s 2 ) s ( ~  - S ) T ~ .  

(ii) The term S ,  gives the same result multiplied by s2. 
(iii) The terms S, and S3 are of the type 

5d""-d'-' ~ ~ + 2 b + 2 ~ + 2 + d + ~  -2a'+2b'+2c'+d'+e' S,=Xp P 
under the conditions 

d + e +  1 = d'+e '  

2a+2b+2c+I  =2ar+2b'+2c' 
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which is impossible for a, b, c, d, e, a', b', c', d ' ,  e' integers. Thus S, and S3 are equal 
to zero and the GF is 

S ( S )  = (1  + s2)S, = (1 + s  + s s Z + 5 S 3 + s s 4 +  5s5+ S 6 f S 7 ) [ ( 1  -s)3( 1 - sZ)5]-'. (4.5) 

The latter means that the integrity basis for the effective Hamiltonian of IVBM, which 
conserves the boson number, consists of 

(i) three basic invariants of first degree with respect to the creation and annihilation 
operators; 

(ii) five basic invariants of second degree; 
(iii) five auxiliary invariants of second, third, fourth and fifth degrees respectively; 
(iv) one auxiliary invariant of first, one of sixth and one of seventh degree. 
Further, it is of interest to discuss the second-degree invariant operators, because 

these operators give the potential energy of the interacting bosons. Expanding (4.5) 
in a Taylor series one obtains 

9 ( s ) = l + 4 s + 1 9 s 2 + 5 6 s 3 +  . . .  , 
The second-degree invariants can be constructed by combining the operators 

J:=[b :Xb: lA ,4=0 ,2  J: = [b: x b l ] A  = 0,2 J : = [ b : x b : ] * A = O , l , Z  

with the analogous operators j ?  built up from the annihilation operators. The tensors 
wiih i = 0 give rise io nine scaiar combinations of the type (Jy?E)i, L = i, 2, 3; wiih 
A =2 ,  to another set of nine invariants, and the last invaraint is ( J i J : ) .  Here we have 
not taken into account the hermicity of the operators J ? ,  I : ,  which will reduce the 
number of the independent invariants. 

As mentioned above, (4.5) give the GF for the SO(3) invariants that conserve the 
total number of the vector bosons N = n ,  -k n2, but do not conserve the total 'pseudospin' 
T and its third projection. That is why it will be very useful to construct the SO(3) 
invariants under the additional conservation of either T o r  MT. 

In the case of T-conservation the GF for the SO(3) invariants can be constructed 
by means of two GFS of the general type (3.14) with p = q  = 1: 

I+abL 
" L ) = ( l  -aL)(1- bL)(I -a2) ( l  - b2) 

1 + Li6L 
( 1  -ZL)(I - 6L)(1-62)(1- 62)' 

F 2 ( G ,  6, E) = 

(4.6) 

For the decomposition SU(3) 2SO(3) the power of the parameter a is equal to A, the 
power of b is equal to p, and the boson number N and the 'pseudospin' T are given 
by N = A + 2 p  and T = A/2. The latter means that the conservation of both N and T 
can be ensured by keeping only terms with equal powers of the parameters a, ti and 
b, 6 in the product F,F2 and then substituting a " v P  and b"26"2 by srh and s;' 
respectively. The SO(3) invariance is ensured by taking L and E in the same powers, 
Then the GF can be expressed as 

n l . n l , k  
Ws,, s2, 0 = u ( n , ,  n 2 ,  k)s?sPgk t = L i  

where u ( n , ,  n , ,  k )  is the number of invariants of the type 

(b:)"(b:)'(bi)'(bdd 

with a + b = c + d = N and T = 0. This function can be calculated by starting from the 
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expression 

(4.7) ~ ( ~ , , . ~ ~ , 5 ) = ( l + s ~ s ~ ~ ) C a  2k+c-2hi+c'  a b 2e1-d b -2r '+d'  L r t d  L -c'+d' 

under the conditions 

2k t c = 2k'+ c' 

2 e t  d = 2 e ' + d '  (4.8) 
t ,+ = c' + ,+' 

where the first two conditions follow from the conservation of N and T, and the third 
one from the SO(3) invariance. Finally, one obtains 

. w S 1 .  s2. 5)=(l+s:s:52)[(1-S,5)(1-s25)(1 - G ) ( I  - s 3 ( l - s l s 2 ~ ) l - ~ .  (4.9) 

As mentioned above, the powers of the parameters a and b in (4.7) are identified 
with the SU(3) labels A and p respectively and, since N = A + 2p, it is evident that the 
parameter s2= b6 symbolizes an invariant of second order with respect to the invariant 
associated with the parameter sI = ad. At this point it is reasonable to transform (4.9) 
into a one-parametrical form with a parameter s constrolling the total degree of the 
invariant. It can be done by means of the substitutions s, = s, s2= s2 and then (4.9) is 

(4.10) 

Following the same line of reasoning as in the case of (4.5) it can be concluded 
that the integrity basis for the effective IVBM Hamiltonian, which conserves N, L and 
T, is realized by means o f  

(i) one basic invariant of first order-the term $6; 
(ii) two basic invariants of second order-the terms s' and s'g; 
(iii) one basic invariant of third order-the term s3g; 
(iv) one basic invariant of fourth order-the term s4; 
(v) one auxiliary invariant of sixth order-the term s6g2 in the numerator of (4.10). 
Again, as in the case of ( 4 . 9 ,  in the effective Hamiltonian the basic invariants can 

appear in arbitrary degrees, while the auxiliary one can appear at most linearly. On 
the other hand, following the results of previous investigations (Raychev and Roussev 
1981) it is well known that the Hamiltonian with a dynamical symmetry SU(3) 3 SO(3) 
can be expressed as 

H = H , t V  

where Ho is invariant with regard to SU(3) and V decreases the SU(3) symmetry to 
SO(3). The operator V, being an SO(3) scalar, can be expressed as a polynomial in 
the SO(3) basic scalars in the enveloping algebra of SU(3) (Judd et al 1974), i.e. 

(4.11) 

Here C2 and C,  are the second- and third-order Casimir operators of SU(3). The 
operator L2 is of the form 

v =  V(C, ,  c,, L2, xi", xi4', X'6'). 

L 2 = ( L .  L) 
Xi,' and X"" are given by 

X"'=([LXQ]"L) 

X'"'([LX 43' ' [ L X  431) 
(4.12) 
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and X C 6 )  is expressed by the commutator 
~ ( 6 )  = [ x O )  xi411 

where L, and Q,, are the components of the angular and SU(3) quadrupole operators 
respectively. In the operator V (4.11) the invariants C, ,  C, ,  L2, X(3’  and XC4’ play a 
basic role and appear in arbitrary degrees, while the invariant X‘6’ is an auxiliary one 
and appears at most linearly. 

It has also been shown (Afanas’ev et al 1972, Raychev and Roussev 1981) that 
there exists another operator, which is an SO(3) scalar and splits the SU(3) multiplets. 
This operator is very convenient for calculations on the basis of Bargmann-Moshinsky 
and is of the following type: 

n = A+A (4.13) 

where At coincides with the EPD A,, in (3.16) and can also be expressed by 

At = (b:)’(b:)’- (b:b:)’ 

and A is hermitian conjugate to A+. According to a theorem proved in (Judd et al 
1974) the operator n can be expanded as a polynomial in the basic SO(3) scalars in 
(4.11) and this expansion will give the connection between Cl and X‘4’. For particular 
physical problems, however, one can use either or XC4’. The matrix elements of the 
operators XO’ and Cl are calculated in Raychev and Roussev (1981). 

Now, having in mind the tensorial structure of the invariants in the G F  (4.10) and 
V (4,11), it can be shown that: 

(i) the basic invariant s t  is identified with N = b:b, + b:b,; 
(ii) the basic invariants s2 and s’t  are identified with C, and Lz; 
(iii) the basic invariant s ’ t  is identified with X”’  (4.12); 
(iv) the basic invariant s4 is identified with XC4’ (4.12) or Cl (4.13); 
(v) the auxiliary invariant s 6 t 2  is identified with the commutator 

[x‘~’, ~ ‘ ~ ’ 1  or [x‘3’, 01. 
It should be mentioned that the dynamical symmetry of the IVBM in the rotational 

(4.14) 

where, because of the boson realization of the generators, the direct product representa- 
tion of U(3) x U(2) is embedded in the most symmetric representation of U(6). In this 
case the U(3) and U(2) labels are given by 

limit is given by the group chain 

U(6) 3 U(3) x U(2) 3 SO(3) 

i.e. only U(3) representations of the type [A, A,, 01 are possible. It is well known 
(Vanagas 1971) that the Casimir operators C , ,  C,, . . . , C,, . . . of the group U(n) are 
independent only for U(n) representations with A, # 0. If A, = 0 and A,-! # 0 the operator 
C, can be expressed as a polynomial in C,, C 2 , . .  ., C ,-,. Hence, in the case (4.15) 
the operator C, is not independent and can be expresed as a polynomial in C ,  and 
C,, which explains the fact that in the structure of the GF (4.10) appears only one 
basic invariant of third order identified with the operator Xi”. 
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It should also be pointed out that thegroups U(3) and U(2) in (4.14) are complemen- 
tary (Moshinsky and Quesne 1971) in the sense that the eigenvalues ofthe second-order 
Casimir operator of U(3) are uniquely determined by the eigenvalues of the second. 
order Casimir operator of U(2). This is due in the relation 

C2(U(3))=@2(U(2))+ N (4.16) 

which means that the IKS of U(3) and U(2) can be labelled by the same quantum 
numbers, for instance the boson number N and the 'pseuodospin' T. Following this 
line of reasoning it is evident that according to (4.16) one of the second-order invariants 
in (4.10) can be identified with T 2 ,  where T 2  is connected with C2(U(2)) by 

C,( U(2)) =$TZ+fNZ 

In this way we proved that the integrity basis for the IVBM Hamiltonian, which conserves 
the boson number N, and the 'pseudospin' T consists of five basic invariants N, L2, 
T', X'", 0 and one auxiliary invariant XC6' = [X"', 01. 

As mentioned above, the conservation of the 'pseudospin' is not obligatory. Thus, 
for instance, the consideration of the relation between IVBM and IBM-2 would lead to 
the separation of the ?iii and vl; pairs from the ~ l ;  and vir pairs, which means that 
it is the third projection of the 'pseudospin' MT = f ( n ,  - n2),  but not 7', that must be 
conserved. In this case the CF can be constructed by means of two, two-parametrical 
CFS of the type (3.10): 

FI(P, 4, L )  = ( 1  +PqL)[(1 -P2)(1 - q2)(1 -PY)(l -PL)(1 -YL)I-' 

F*(p, q, L-') = ( 1  +pqL-')[(l -p2)(1 -q2) (1  -pcj)(l -pL-')(l -qL- ' ) ] - '  

Further, again in the product F,(p,q, L ) F 2 ( p ,  q, L-')  only terms with zero power with 
respect to L and equal powers of the parameters p and p, and q and q, should be 
taken into account. Then the products p"'p"' and q'lq"' must be substituted by s", and 
sn2 respectively. The result gives the G F  for the SO(3) invariants that conserve N and 
MT. This function is of the following type: 

(4.17) 

5. Conclusions 

In a forthcoming paper we are going to discuss in more detail the relation between 
IVBM and ISM-Z, where the function (4.17) will play an important role. 

Also, it should be mentioned that some of the results of this paper can find an 
additional region of application. In fact the OF (3.10) corresponds to the decomposition 
U ( 6 ) 3 S 0 ( 3 )  and gives the multiplicity of the different m s  D L  of SO(3) in the Nth 
symmetric product of the six-dimensional I R  [ I I6  of U(6), which decomposes in IRS 
of SO(3) according to the rule [116= D ' +  D'. From the point of view of SU(3) we 
assumed that 

[116= (1 ,0)+(1 ,0)  = D'+D1.  (5.1) 

If instead of (5 .1 )  one uses 

[ 1 1 6 =  (1 ,0)+(0 ,1)  = D ' + D 1  (5.2) 
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then (3.5) transforms into 

and the GF of the type (3.6) will be 

= [ ( I  -pA)(1 - $ ) ( I  -pq)I-'. (5 .3)  

The combination of (5.3) and (3.7), taking into account only terms of zero degree with 
regard to the parameters A and E, again results in the GF (3.10). Hence, the GF (3.10) 
is applicable to both cases ( 5 . 1 )  and (5 .2) .  The latter explains the similarity between 
(3.10) and (3.7), namely that (3.10) can be obtained from (3.7) by substituting A with 
p and B with q, and then multiplying the result by the factor (l-pq)-' ,  i.e. 

The SU(3) substructure (5.2) appears in the translationally invariant three-body 
problem, where the Jacobi coordinates are given by 

1 
r - - ( r , + r 2 - 2 r 3 )  

1 
*-A r - - ( r I  - r2) '-a 

(the masses are equal). Further, one can introduce creation and annihilation operators 
of oscillator quanta b:, b:, bt , b2 and transform them to the operators 

The operators b: and b? transform according to (1,O) and ( 0 , l )  of SU(3) respectively. 
The SU(3) algebra is defined by 

Ai,r = btbr  - bixb- i  i, k = x, y l z .  

In this way the set of operators b:, b' determines a basis for the six-dimensional I R  

[116 of U(6) with an SU(3) substructure given by (5.2). Thus (3.10) gives the G F  not 
only for IVBM but for the three-body problem as well in the case of the decomposition 
U(6) 3 SO(3). 
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